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The initial stage of the regular regime is analyzed. The features found in the evo- 
lution of this stage may be useful in research on thermal physics. 

The classical approach to the study of the heating of an object in a medium with a con- 
stant temperature involves the distinction of three regimes: i) the initial or disordered 
regime; 2) the regular regime; 3)the steady-state regime [l, 2]. 

In the regularregime, the temperature changes are described by a simple exponential 
function and are independent of the initial temperature distribution. 

The concept of the regularization of the heating process is also extended to the cases 
in which the temperature field in the limitingsteady state is nonuniform [3]. 

All definitions of the regular regime are based on solutions which are series, each term 
of which contains an exponential factor. Depending on the particular boundary conditions, the 
solution may also contain terms in which the time appears without an exponential function. 
In this representation, a single term (the first term), which contains the time, emerges as 
the most important term at a certain time after the beginning of the process. After this 
time, the temperature field can be described by a very simple function (exponential, linear, 
etc.), in accordance with the boundary conditions. 

An experimental confirmation of the theory for the regular regime actually means that the 
sensitivity of the measuring instruments is limited and that, beginning at a certain time, 
the components of the temperature field lying below the sensitivity of the instruments are 
not detected. Furthermore, evenif the instrument does detect deviations from the regular 
regime, they can be neglected within some permissible error. In other words, from the en- 
tire spectrum of the temperature field we distinguish that component which is the most im- 
portant. The time ~min marking the beginning of the regular regime can be determined only 
within a certain error, and this time depends on this error [2]. 

Remaining within the framework of these arguments, we can replace the exponential func- 
tion by a series in increasing powers of the time. We can evidently always find a time tmax 
such that for all t < tma x we can retain in the expansion of the exponential function only 
~fie term containing the first power of the time, within a specified error; in other words, 
in the initial stage of the regular regime (tmi n < t < tmax), the time dependence of the 
temperature can be treated as linear. Below we refer to this as the "quasilinear" stage. 

The length of this quasilinear stage should evidently be determined from the equation 
At I = tma x -- tmin; this result depends on several factors, including the accuracy with which 

tmi n andtma x are determined. 

Let us examine certain features in the evolution of the quasilinear stage for the case 
of an infinite hollow cylinder (Ro < r < R), whose inner surface begins to experience a heat 
source of constant strength QI (per unit length) at time t = 0. The cylinder is initially at 

the temperature of the surrounding medium. 

In this case we can write the solution of the problem, in dimensionless variables, as 
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o - ( i )  

where 

1 , ~  G (stoP) [1 - -  exp (--s~Fo)], 
Tsm)r ~ 1J 2p ~ ~ =  sm[(Bi2 , 2 2__ 

O = T - -  T O ~,; 
Q~ 

O ($m~)) = ~1 (Srr~O0) Yo (smO) - -  Y1 ($~[)0) Jo ($rv.P)'~ 

J1 (S~#o) (fA)ra -~- 
SmJl(sm) - -  Bi Jo (Sin) 

The numbers s m for the summation over m = i, 2, 3, ... are defined as the positive roots of 
the equation 

BiG (s) + sG' (s) : 0. (2)  

The roots of this equation form a discrete increasing sequence sl < s2 < s3 <..., so that 
for any arbitrarily small positive number ~ we can find a number Fomin, such that for all 

Fo ~ Fomi n we have the inequality 

exp ( - -~Fo)  -.~ e, (3)  

under which we can retain simply a single term containing the time in Solution (i). In other 
words, we can use 

O = O -- D 1 e• (--~Fo),  

where 

0 -- I ~ G(s,,,p) _ 1 (1 Bi lnp) ;  
oo 2p ~ s m [(Bi 2 + s2m) ~ - -  1] 2nBi 

Dt = G (sip) 
2PoS 1 [(Bi 2 + ~ 2 " st) r - -1]  

(4) 

under which Dependence (4) 
e n c e  

From Inequality (3) we find 
l l 

F~ = s$ i n - - , 8  (5)  

at which Dependence (4), describing a regular temperature increase, becomes valid, within 
the permissible error. 

It can be shown that the root s2 reaches its minimum value at Bi = 0 and Po = 0 (a solid 
cylinder): s2 = 3.8317. In this case the maximum time before the regular regime is reached, 
e.g., for g = l0 -2, is given by 

Fomin-~0.32.  

In the case Bi = 0, the regular regime is characterized by a linear time dependence of the 
temperature (adiabatic heating). 

The first root in Eq. (2), sl, is always smaller than s2, and it vanishes at Bi = 0. 
Accordingly, for any arbitrarily small positive number e and for an arbitrarily large number 

Foma x > Fomi n we can find a value sl such that for all Fo ~ Fomax we have the inequality( 

1 
2 s~Fo -~ e (e << 1), (6 )  

can be replaced, within a permissible error, by the linear depend- 

where 

O ----- D + AFo,  (7)  
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Fig. 1 Fig. 2 Fig. 3 

Fig. i. Dimensionless temperature as a function of the Fourier number at the outer 
surface of the cylinder. 

Fig. 2. Regions in which the quasilinear stage does and does not exist for the case 
= 10 -2 " 

Fig. 3. Length of the quasilinear stage as a function of Po in the case e = 10 -2 
for various values of the Biot number Bi. 

D= O| A=Dx~. 

From (6) we find 

2~ 
F%= = s~ 

Accordingly, in the range Fomi n < Fo < Foma x the function @(Fo) can be assumed linear with 
the specified accuracy (this is the quasilinear stage). The slope of the quasilinear stage 
is governed by the quantity A = D:s~, and its duration is governed by 

28 [ i (% I= in+]. (8) 
AFo~= ~-~-- 1 - -  28 \ s~ / 

Since the roots sz and s2 are functions of 9o and Bi, then for a fixed quantity e the quanti- 
ty AFol is also a function of these parameters. In the limit Bi § 0, we have s~ § 0, while 
AFo~ § =; i.e., the exponential function degenerates into a purely linear function (adiaba- 

tic heating). 

As an example we show in Fig. i the functions 0(Fo) for the outer surface (p = i) for 
0o = 0.2 and Bi = 1.0 (I), Bi = 0.i (2), Bi = 0.01 (3), and Bi = 0 (4). 

Since the parameters 0o and Bi are independent, there is a possible combination of 
these parameters for which we would have AFo~ = 0. Figure 2 Shows a curve relating Bi and 
po, under the condition AFo I = 0 (e = 10-2). For any combination of the parameters Bi and 
Po in region I (below the curve), a quasilinear stage exists (for the value of e adopted). 
In region II (above the curve), there is no quasiiinear stage. It follows from Fig. 2 that 
as Po is increased the range of values of Bi for which a quasilinear stage exists becomes 

broader. 

Figure 3 shows the length of the quasilinear stage as a function of 0o for Bi = 0.0075 
(i), 0.01 (2), 0.012 (3), 0.015 (4), 0.02 (5), 0.025 (6), and0.05 (7) for e = 10 -2. We see 
that a maximum appears on the AFol(po) depend4nce as Bi is increased. In the limit Po § i, 
all the calculated curves tend toward zero; this happens because (as can be shown) in the 
limit Po § 1 the roots sz and s2 tend toward infinity (regardless of Bi # 0), but the inequal- 
ity s, < sm remains valid. 

1022 



The quasilinear heating regime described by (7) is analogous to the quasisteady regime 
(see, e.g., [4, 5]). The quasisteady regime, however, occurs upon a linear change in the 
temperature of the medium or the surface, while the quasilinear stage occurs at a constant 
temperature of the medium. In the quasilinear regime the slope of the function e(Fo) is gov- 
erned by the quantity D1s~, itself a function of the Blot number, and the slope is different 
at.different points over the cross section of the cylinder. In the quasisteady regime, on 
the other hand, this slope is the same everywhere and is governed by the rate of change of 
the temperature of the medium or the surface. Furthermore, the linear stage in the quasi- 
linear regime is of only limited duration. 

These arguments can be extended to other objects of simple shape (a plane or a sphere, 
for example) under analogous conditions. 

The theoretical conclusions reached in this study have been tested experimentally, and _ 
an exceptionally simple procedure has been worked out for determining several thermal proper- 
ties. 

NOTATION 

0, dimensionless temperature; p = r/R, dimensionless radial coordinate; po = Ro/R, di- 
mensionless inner radius; Bi = (a/%)R, Biot number; Fo = (a/R2)t, Fourier number; Jo(sp), 
J~(sp), Yo(sp), Y1(sP), Bessel functions of the first and second kind. 
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